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Abstract

In seasonal computations, the Mintz-Arakawa two-level model is found
to be sensitive to a minor alteration in the computational program. Effects of
the program change on monthly mean sea level pressure fields are small in the
first month, but large in the second and third months, although the meteorologi-
cal histories generated by both the original and modified programs are equally
credible.

The inherited éffects of a transient (one month) sea surface temperature
(SST) anomaly on the computed monthly mean sea level pressure fields over a
period of a season are about as large in absolute magnitude as those generated
in the model by a persistent (seasonal) SST anomaly.

The effects of a transient SST anomaly in the North Pacific Ocean on
monthly and seasonal temperat\iré and precipitation in the eastern United States
may be large enough to prodﬁce a chaﬁge of one or two class intervals in these
predicted weather elements., The mdael-generated précipitation in the equa-
torial region is also found to be sensitive to the sea surface temperature field

in the North Pacific.
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Introduction

In Ehree earlier reports (Spar, 1972, a,b,c) we have described some re-
sults of numerical experiments with the two-level Mintz-Arakawa global general
circulation model (Gates, et al., 1971) in which a certain persistent positive
anomaly pattern was superimposed on the sea surface temperature (SST) field
for a period of three months. This note describes some further calculations
which were carried out as part of the same experimental program, but which
have not been previously reported. Like the experiments which have already
been described, these new computations were also designed to estimate the in-
fluence of SST anomalies on the behavior of the atmosphere over periods of time
from a month to a season, and to provide some background for studies in long
range weather prediction., Although the new experiments were not entirely suc-
cessful (for reasons which are discussed below), the results may nevertheless
be of some interest.

One basic question which arises regarding the response of the atmo-
sphere to an SST anomaly concerns the duration, or persistence, of the anomaly
field. In the previously reported experiments, an SST anomaly pattern in the
extratropical Pacific Ocean was held fixed for three months, The three-month
model history corresponding to this so-called ''"anomaly run'' was then compared
with a three-month ''control run", identical in every respect except for the
absence of the SST anomaly pattern, In the new computations, the Northern
Hemisphere winter experiment (one of the three original experiments conducted)
was rconcated with the same initial state, and with the same positive SST anom-
aly (maximum, 6%C) located in the same region of the North Pacific Ocean
(centered on latitude 32°N, longitude 160°*W). However, this time the warm
oceanic pool was allowed to persist for only one month of the anomaly run,
after which time the control SST field, represented by the climatological mean
annual SST pattern, was restored. How would the atmosphere respond to only
one month of anomalous thermal forcing compared with a season of the same
SST anomaly? It was our intention to compare the two sets of meteorological
histories in order to answer this question. Unfortunately this proved impos-

sible due to an unanticipated minor change in the computational program at

1



GISS1 between the two experiments. The program changez, which was intended
only as an optimization device, resulted in the separation of what should have
been two identical model histories after about two weeks, a result very similar
to that exhibited in various predictability experiments. Thus, the two sets of
SST anomaly experiments were not comparable, and the question above could
not be answered directly. Although the program modification eliminated the
possibility of comparing a transient one-month anomaly with a persistent sea-
sonal anomaly, it inadvertently provided an opportunity to examine the effect

of a computational perturbation on extended time integrations with the model.
Inthe first part of this note the solutions generated by the modified program,
hereafter referred to as the 'fast' program, are compared with the correspond-
ing solutions computed with the original program. Furthermore, in the course
of the one-month anomaly experiment with the fast program, certain new calcu-

lations were performed. These are presented in the latter part of this paper.

Effects of the Program Change

A comparison of the control histories generated by the original and fast
programs should reveal the effects of the program change2 over the total three-
month period. A similar comparison of the corresponding original and fast
anomaly runs is valid only for the first month, after which time the differences
are due to both the program change and the differences between the SST fields.
Hence, for the first thirty days we may use either the control or anomaly his-
tories to determine the effect of the program change. However, beyond thirty

days only the control runs can be employed for this purpose.

lThe Goddard Institute for Space Studies (GISS) is located in New York City.

2The program change introduced was only a faster algorithm for computing the
function pK, where p is pressure and K (= R/cA ) is the Poisson constant.
The two algorithms give identical results up to 4 to 6 digits over the range

of p from 50 to 1050 mb.



In both the anomaly and control runs, there is virtually no detectable
difference between the daily global sea level pressure fields generated by the
original and fast programs for the first twelve days., Up to day 9 the maximum
difference at any grid point is less than 2 mb. On day 12 the maximum differ-
ence exceeds 5 mb, but in general the differences are much smaller, and the
pressure patterns are almost identical, However, on day 14 significant dif-
ferences between the synoptic patterns begin to appear, with absolute differ~
ences of sea level pressure in excess of 8 mb, These differences continue to
increase, especially in the Northern Hemisphere, and by the end of the month
the differences between any two corresponding daily control (or daily anomaly)
maps, computed respectively with the original and fast programs, are at least
as large as the differences between an anomaly map and its corresponding
control map, The cumulative effect of the computational differences between
the original and fast programs on the daily sea level pressure fields is similar
to that found in predictability experiments starting from two initial states which
differ from each other by only some small random error distribution (see, e. g.,
National Academy of Sciences, 1966). After about two to three weeks, the two
solutions diverge, becoming effectively as uncorrelated as any two randomly
selected fields.

. Despite the limit on predictability of daily patterns indicated above,
time averaging may be expected to reduce the differences between the solutions
computed by the two programs. This is illustrated in Figure 1 which shows
the 30-day mean sea level pressure fields for the first 30 days of the control
history as generated by the original and fast programs respectively. Although
some quantitative differences between the monthly mean pressures can be seen,
notably in the North Atlantic Ocean, the two patterns are virtually identical
for the first month. However, aiter the first month, even 30-day averaging
fails to smooth out the differences between the two control histories. As shown
in Figure 2, the mean sea level pressure maps for the second month (days 31~
60) of the control history, as computed with the original and fast program
respectively, are quite different both in quantitative detail and in major pat-

tern features. Except for the subtropical high pressure cells in the Southern
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Hemisphere, every major pressure system has been altered by the program
change. Thus, the depth of the North Pacific cyclone is changed; the depth
of the North Atlantic cyclone is changed and the position of the center is shifted
as well; the Asiatic anticyclone is shifted; and in the South Pacific the pressure
pattern is completely altered.

In the third month, represented in Figure 3 by the mean of days
61-90, pressure difference between the original and fast programs are appar-
ent in the subtropical latitudes of the Southern Hemisphere as well as in the
tropics. However, the most striking effect of the program change is seen in
the North Atlantic where the fast program has generated a deep cyclone that is
not in evidence in the original solution. This sensitivity of the model to a rela~
tively minor program alteration is indicative of the difficulty of forecasting
even the time-averaged monthly and seasonal pressure patterns with a dynami-
cal model. Although both sets of solutions for the second and third months ap-
pear realistic and are equally credible, they obviously cannot both represent
""correct' predictions. The combined effect of uncertainty in the initial state
together with the ''computational uncertainty'’ noted here places a severe limit
at the present time on both the application of dynamical models to monthly and

seasonal forecasting and the credibility of the results of anomaly experiments.

Qualitative Comparison of the Responses to
Transient and Persistent SST Anomalies

Although the program change referred to above made it impossible
to compare in quantitative detail the results of the two experiments (i.e., the
transient one-month anomaly versus the persistent seasonal anomaly), it is
nevertheless possible to extract some qualitative information from the compu-
tations. For example, one can determine whether the anomaly-control pres-
sure differences two months after the SST anomaly was removed indicate a
larger or smaller carry-over effect than that resulting from the persistent
warm pool,

The transient and persistent SST anomaly experiments are compared
in Figures 4, 5, and 6 for the first, second, and third months, respectively.

Each figure shows the difference between the 30-day mean sea level pressure
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fields for the anomaly run and the corresponding control run. The upper mapv
(A) in each figure represents the case of the persistent SST anomaly, and was
computed with the original program, while the lower map (3B) represents the
case of the transient (first month only) SST anomaly, and was computed with
the fast program.

In Figure 4, representing the first month, the two anomaly-minus-
control pressure difference fields should be identical, if the computational pro-
gram had not been altered. The two difference fields are indeed quite similar,
with differences close to zero over most of the earth in both experiments. One
major effect of the North Pacific SST anomaly, which appears in both Figure 4(A)
and 4(B), is a negative difference in excess of 10 mb on the West Coast of
North America. On the other hand, an equally large negative pressure effect,
which appears over Labrador in the original computation [Figure 4(A)], is not
found in the fast computation [Figure 4(B)j, although qualitatively the patterns
are similar on the two maps. _

The anomaly-co‘ntrol pressure differences in the second month (shown
in Figui‘e 5) are, as might be expected, quite different for the two experiments
represented by Figures 5(A) and 5(B). In view of the effect of the program
change noted above, a detailed comparison of the two fields wey;d.- be of little.
alue. However, it is worth noting that the magnitude of the residual pressure
effect left after removal of the transient warm pool, as represented by
Figure 5(B), is no smaller in the Northern Hemisphere than that associated
with the pérsistent warm pool, as shown in Figure 5(A). In the Southern Hemi-
sphere, on the other hand, the magnitude of the response is weaker in the for-
mer case than in the latter. The range of mean sea level pressure differences
over the globe in the second month is from -25 to +12 mb for the transient SST
anomaly compared with -20 to +25 mb for the persistent anomaly.

From a visual comparison of the two maps in Figure 6 it is apparent
that the major effects of the persistent anomalous thermal forcing, shown in
Figure 6(A), are not reflected in the map [Figure 6(B)] representing the residual
effect of the transient warm pool in the third month., The two major effects in
the former case are the positive pressure difference in Greenland and the

general meridional gradient of pressure differences in high latitudes of the

17
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Southern Hemisphere, neither of which appears in Figure 6(B). Thus; it ap-
pears at first glance as if the residual effect of the transient SST anomaiy is
diminishing with time. However, the range of pressure differences over the
globe in the third month is from -15 to +15 mb for the transient case compared
with -15 to +20 mb for the persistent case. Thus, the magnitude of the effect
is again almost as large in the transient case, although the pattern of effects
appears to be better organized on a large scale in the case of the persistent
warm pool,

Another indication of the effect of the transient SST anomaly, as com-
pared with the persistent anomaly, is illustrated in Figure 7, which shows the
meridional profiles of the anomaly-minus-control differences between the zonal-
ly averaged 600 mb heights on day 90, the final day of each run, for the two
experiments. The solid curve represents the case of the persistent SST anom-~
aly, and was computed with the original program, while the dashed curve repre-
sents the case of the transient SST anomaly, which was computed with the fast
program, Clearly the magnitude of the effect is the sarné in both cases, although
the distributions are different. In both the persistent and transient anomaly
cases there are large interdiurnal variations of the meridional difference pro-
files, so that the curves shown in Figure 7 are in no sense ''typical', (For
example, the large effect in the equatorial region indicated by the dashed curve
appeared only in the last few days of the run with the transient anomaly,)
However, the two curves are representative in the sense that they do indicate
the relative magnitudes of the effects of transient and persistent SST anomalies.

The results above suggest that the magnitude of long-term (e. g., |
seasonal) effects of SST anomalies may be just as great for a transient (e. g.,;
one month) anomaly as for a persistent one, even though the form of the atmo-
spheric response may be quite different. In the transient anomal;f experiment,
only the new initial conditions at the beginning of the second month are different
for the anomaly run than for the control run, Any anomaly-control pressure
differences generated in this experiment after the first month are thus inherited
effects of the anomalous thermal forcing that occurred in the first month, Al-
though in time the atmospheré may "forget" its initial conditions, and the in-

herited effect may decay, the rate of decay is apparently slow enough for such
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effects to be found at least two months after the SST anomaly has been turned
off. This apparent sensitivity of the model global atmosphere to local transient
oceanic anomalies indicates that the problem of extended and long range predic-
tion will probably not be solved until an interactive ocean-atmosphere model

is successfullir developed.

In view of the model's sensitivity to the computational perturbation
noted above, as well as other evidence 3 of its extreme sensitivity to random
perturbations in the initial state, one may question whether any conclusions at
all can be drawn regarding the effects of persistent SST anomalies in the real
atmosphere from the model experiments. Certainly the noise level of the nu-
merical experiments is now much too high for any signal generated by the SST
anomalies, to be clearly detected. At this point (and until some way can be
found to reduce the noise level of the experiments) one can only argue that the
solutions generated represent possible atmospheric responses,‘and do give
some indication of the possible magnitudes of the effects of the SST anomalies
studied.

Effect of 2 Transient SST Anomaly on Temperature and Precipitation

In the course of the experiment with the transient SST anomaly, a
number of global and regional diagnostic quantities were calculated. Among
these were the daily average surface temperature and average daily preéipita—
tion over the eastern region of North America, as well as daily and seasonal
averages of zonal and global precipitation. A comparison of the anomaly and
control results in terms of these ""weather'' parameters is presented in this
section to indicate the possible climatic influence of the oceanic anomaly., (As
we did not compute these same quantities for the persistent anomaly experi-
ment, it is not possible to compare the relative magnitudes of the effects of the

two types of SST anomalies).

3W. L. Gates of Rand Corporation has recently reported (in a Symposium on

Climatic Change held at the Scripps Institution of Oceanography in LaJolla,
California on 15-17 November 1972) the results of numerical experiments
which clearly show that random perturbations of the initial state in the model
lead to the generation of large amplitude ''noise' in the 30-day mean pressure
fields.
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The '"'eastern region' is represented in the experiment by 30 grid
points in the area bounded by latitudes 30°N and 50°N and longitudes 70°W and
90°W. A regional daily average is computed as the mean of 360 two-hourly
grid point values, and a regional monthly average as the mean of 30 daily
averages. The effect of the transient SST anomaly in the North Pacific Ocean
on the computed eastern regional weather for the three month winter season
is indicated in Table 1, in which are shown the regional average monthly and
seasonal temperature, in degrees celsius, and total precipitation, in centi-
meters, for the anomaly and control runs.

Table 1. Computed monthly and seasonal mean temperatures (T) in °C and

total precipitation (R) in cm. averaged over the eastern region for
the anomaly (A) and control (C) runs. Differences (A-C) are also

shown,
Month No, 1 2 3 Season
T(°C) Rfcm) T R T R T R
A +6.1 7,15 +8.3 10.18 45,0 7.03 +6.5 24,36
C +4. 6 8.34 +5.1 16,92 +6.7 11.36 - +5.5 36,62

A-C +1.5 -1,19 +3,2 -6.74 -1.7 -4.33 +1.0 -12,26

In view of the computational uncertainty noted earlier, no special
significance should be attached to the numerical results in Table 1. However,
the magnitudes are interesting. Effects of the order of 1 to 3°C in monthly and
seasonal mean temperatures are indicated in the table by the differences, A-C.
Over the eastern region of the United States in winter, the class limits used
in monthly weather predictions by the National Weather Service (Namias, 1953) 4
to separate the monthly mean temperature class !'normal' from "above" and
'""below'' normal span a range of only about 2 to 3°F, or less than 2°C. The
departure-from-normal class limits which define the temperature prediction
classes ''much above' and "'much below'' normal are approximately + 3 to 6°F,
or only about +2 to 3°C. Thus, one effect of a transient SST anomaly in the

North Pacific Ocean could possibly be to alter the monthly mean temperatures

4See also the Average Monthly Weather Outlook issued twice a month by the

National Weather Service.
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over the eastern United States by 2s much as two class intervals, if the model
computations are cfedible.

"~ For the purposeé of monthly precipitation forecasting in winter in the
eastern United States, the ciass limits used to separate ''moderate'' precipitation
from "heavy'' and 'light" respectively span a range of approximately 2 inches or
less; i.e., no more than about 5cm. As can be seen in Table 1, effects of this
magnitude can apparently be produced by a transient SST anomaly in the North
Pacific Ocean, if the model computations are to be believed. Indeed, in the
present experiment, the SST anomaly appears to have caused a consistent defi-
cit of precipitation amounting to 12 ¢m (almost 5 inches) for the season over the
eastern region. Thus, it appears that the influence of even a transient North
Pacific SST anomaly on regional weather, over periods of at least months and
seasons, may be "'significant' in the sense that monthly (as well as seasonal)
temperatures and precipitation can possibly be altered by as much as one or
two class intervals. From the viewpoint of monthly and seasonal weather pre-
diction, this is clearly a matter of some practical importance.

The version of the two-level Mintz-Arakawa model used for this ex
periment overpredicts global precipitation. This is primarily the result of an -
overprediction in the tropics resulting from the parameterization of convection,
which leads to an excess in the convective component of the precipitation. The
global average precipitation for the 90-day period is 4,6 mm day-l for the con-
trol run and 4. 4 mm day~1 for the anomaly run, indicating an apparent reduction
of less than 5% in the global precipitation due to the SST anomaly. The zonal
average precipitation for the season in both runs shows a maximum at latitude
6°S, with 24. 6 mm da.y'-1 in the control run and 22, 9mm day-'1 in the anomaly
run, indicating a modest decrease (about 7%). However, at latitude 2°S the
anomaly run yields 9.2 mm da.y"1 compared with 19, 0 mm day“l for the con-
trol, a decline of about 50 %, In view of the low level of credibility of the
tropical precipitation values, no attempt has been made to trace the mechanism
in the model which produced this startling remote effect of the North Pacific
SST anomaly. Nevertheless, the computations again indicate the sensitivity

of the model to relatively modest changes in sea surface temperatures.
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Conclusions

The experiments in seasonal weather computation with the global two-
level Mintz-Arakawa model have shown that the model is sensitive both to the
numerical differences associated with different computational algorithms and
to the physical influence, as represented in the model, of the sea surface tem-
peratures. With a time step of six minutes, more than 2 x 104 steps are re-
quired to march out a 90-day forecast, The cumulative effect of the differences
between alternative computational procedures over this many time steps results
in a decorrelation of the alternative solutions, all other things being equal.

Nor is the situation helped appreciably by time averaging. Monthly mean maps
for the second and third months after the start of the computations are also de~
correlated. '

The sensitivity of the model to computational procedures raises seri-
ous questions regarding the credibility of the seasonal calculations. The SST
anomaly experiments indicate that both persistent and transient sea temperature
variations of reasonable magnitude are capable of generating marked differences
in surface and upper level pressure patterns, as well as significant long-term
weather effects at remote places. There is, as yet, no reason to doubt that this
behaviour of the model may indeed reflect a similar sensitivity of the real atmo-
sphere to the temperature of the sea surface. However, the computational
sensitivity does suggest that the particular manner in which the model responds
to an SST anomaly is probably not a credible reflection of nature. At this time
one can conclude only that the interaction between the atmosphere and the ocean
introduces a significant element of indeterminacy in monthly and seasonal

weather prediction,
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